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We introduce a new principal fiber bundle, the bundle of biframes, associated 
with the geometry of bivectors on spacetime. It is shown that the biframe bundle 
is a natural geometric arena for modeling the already unified theory of Rainich, 
Misner, and Wheeler (RMW). The structure equations for the bitorsion inherent 
in the biframe bundle lead to a generalization of Rainich's algebraic conditions 
for electromagnetic-type stress tensors which includes sources in a natural way. 
Besides the usual complexion vector of the RMW theory, an additional new 
complexion-type vector is found. The generalized algebraic conditions reduce 
to the usual RMW conditions in the special case of no sources. 

1. I N T R O D U C T I O N  

The already unif ied field theory of Rainich (1925) and  Misner  and  
Wheeler  (1957) (RMW) is a geometrical ly unified theory of gravity and  

source-free e lectromagnet ism.  The s tandard  geometrical  a rena  for the R M W  

prob lem is four -d imens iona l  R i e m a n n i a n  geometry,  and  the R M W  theory 
provides the necessary and  sufficient condi t ions  for a spacet ime (M, g) to 

be a source-free E ins t e in -Maxwel l  spacetime. With in  this arena,  however,  
there has never  been  a complete ly  geometrical  fo rmula t ion  nor  a satisfactory 
method  to extend the R M W  program to inc lude  E ins t e in -Maxwel l  space- 

t imes with sources. In  par t icular ,  sources for the e lectromagnet ic  field and  
none lec t romagne t i c  sources for the gravi ta t ional  field have been  treated in 

nei ther  a geometrical  nor  a nongeometr ica l  m a n n e r  within the f ramework 
of  the s tandard  R M W  theory. 

In  this paper  we show that the R M W  prob lem has a na tura l  fo rmula t ion  
in a new geometr ical  arena,  namely  the bi f rame bund le  associated with the 
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spacetime manifold M. The geometrical richness of  the biframe bundle 
provides a natural geometrical setting for the original RMW problem and 
allows a generalization of  the original RMW theory to include geometrical 
sources for the Maxwell equations. Furthermore,  it will be shown that the 
RMW formalism can be extended to include nongeometrical  gravitational 
sources. The generalization introduces a second complexion vector in addi- 
tion to the usual RMW complexion vector and reduces, in the special case 
of  no sources, to the standard RMW formalism. 

Riemannian geometry on a manifold M is usually considered in terms 
of  a metric tensor on M and the associated Levi-Civita linear connection 
on the bundle of  linear frames LM. Indeed, the geometry of  linear connec- 
tions has LM as the fundamental  arena. This standard picture of  geometry 
is based on the fact that all higher order tensors on M can be built up from 
tensor products of  vectors and covectors, and the assumption that the 
t ransformation properties of  such tensors are only induced by changes of  
linear frames. However,  the tensor geometry of a manifold is much richer 
in the sense that there exist tensor frame bundles with linear connections 
that cannot  be induced f rom connections on LM. 

Thus, for example,  if one considers a tensor field T of type (r, s) on 
the spacetime manifold M, then at each p ~ M the tensor T(p) is an element 
of  the tensor space T~Mp which is itself a vector space of dimension 
N = (dim M )  r+~. Furthermore,  linear frames (bases) for each of these vector 
spaces T~Mp can be used to construct a corresponding tensor frame bundle 
L~M. This bundle consists of  pairs (p, (~'A)), A = 1 , . . . ,  N, where (~rA) is 
a linear frame for TrMp. 

AS an explicit example of  a tensor frame bundle, consider tensors of  
type (1, 2) on a four-dimensional spacetime manifold M. Let (e~) be a linear 
frame for TaMp. As is well known, the vector space T1Mp is a four- 
dimensional space with transformation group G/(4); that is, frames for 
TIMp t ransform under  GI(4). 

In a similar manner,  the space T~Mp forms a vector space that is sixty- 
four-dimensional,  with corresponding structure group Gl(64). Let (~A) be 
a basis of  this vector space (A = 1 . . . . .  64) with dual basis (~.B), ~'~(~rA) = 
6~. Since elements of  T~Mp can be built up from tensor products of  elements 
of  TIMp and T~Mp, this basis can be written as "rrA='n'a.y(~ |174 
where (~v)  is dual to (e~). L~M, the set of  all frames for T~Mp at all points 
of  M, can be given a manifold structure such that L~M -~ M is a principal 
fiber bundle with structure group G/(64). 

The above relations between the basis of  TIMp and T~2Mp shows clearly 
that G/(4) t ransformations on the basis (e~) can induce some transforma- 
tions on the (~'A) basis. However,  the (~'a) will t ransform in general under 
the full Gl(64) group. Clearly, not all G/(64) transformations can be induced 
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by G/(4) transformations. In this sense the tensor frame bundle is much 
richer in structure than just that induced by the frame bundle LM. 

In a similar manner, a linear connection on LM can induce a connection 
on L~M. For simplicity, assume a Riemannian connection on LM. The 
pullback of the Ricci identifies from LM to M for a tensor of  type (1, 2) 
can be written in local coordinates as 

T o .  ~ - -  = ~ ( - R ~  R,~Tv,~+ R ~ T ~  ) (1.1) VE~V~1T~ ~ 1 o p ~ o p . 

where V~ is the local covariant derivative operator with respect to the 
Riemannian connection and R ~  are the components of the Riemannian 
(LM) curvature tensor. This notation follows Schouten (1954) and will be 
used throughout. These identities can be rewritten as 

VE~V~1T~a-!~poe~ T~ (1.2) - -  2 ' tx ~/33,,5o- * 0 ~ b  

where 

~ro~ - ( - R ~ r ~  ~ - (1.3) 

Here, /~ can be thought of as the coordinate form of a curvature tensor on 
L~M that is induced  from the frame bundle curvature tensor. However, 
such a curvature tensor is only a special case of a general curvature on L~M. 

Connections on L~M can be defined in the standard way analogous 
to the definition of connections on LM, i.e., by gl(64)-valued one-forms 
with standard transformation properties [see, for example, Kobayashi and 
Nomizu (1963)]. Given such a connection on L~2M, the components of  the 
pullback to M can be denoted as FAB (A, B = 1 , . . . ,  64). The local coordin- 
ate expression of the corresponding g/(64)-valued curvature two-form can 

B then be written as R~A [cf. equation (2.8)]. A related object can be defined 
a s  

RPO4, r , B  Ap O& 
al3y&r = 1~ alga T"l'y8 ,, Bo" ( 1 . 4 )  

The curvature (1.4) will not, in general, be just an induced curvature of the 
type given in (1.3), and in fact a general connection on L~M is independent 
of connections on LM. On the other hand, given a connection on LM, one 
can always induce a special connection on L~M as discussed above. 

In this paper we will be concerned with only one of  these tensor 
bundles, namely the principal bundle of biframes. The tensor spaces associ- 
ated with this frame bundle will be AT:My, i.e., antisymmetric rank-two 
tensors of type (2, 0) (bivectors) at each p e M. A basis of AT2Mp will be 
called a biframe, and we will denote the biframe bundle by L2M. For a 
four-dimensional spacetime manifold M, each AT2Mv is six-dimensional. 
Thus, a biframe consists of six independent bivectors at a spacetime point. 
A basis of the dual space, AeMp, with cobiframe bundle L2M *, consists of 
six independent cobivectors (two-forms) at a spacetime point p. 
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The cobiframe bundle can be considered physically interesting for a 
number of  reasons. In particular, the cobiframe bundle is a natural 
geometrical arena for gauge theories. The intuitive idea is the following. 
Suppose one is given a set of  independent gauge curvature two-forms 
(Yang-Mills fields) on the spacetime manifold. If  the number of  gauge 
curvatures is less than or equal to six, these two-forms can be used to 
construct all or part of  a basis of  A2Mp. Then geometric structures on L 2 M  * 

can be expressed fundamentally in terms of  these special cobiframes. 
One of  the main features of  the RMW problem is the existence of  

naturally defined geometrical bivectors, the extremal Maxwell square root 
of  the Ricci tensor and its dual. Norris and Davis (1979) have classified 
source-free Einstein-Maxwell spacetimes in terms of the natural Rieman- 
nian bivector structure, i.e., in terms of  the infinitesimal holonomy group 
(IHG).  The approach uses a classification scheme due to Schell (1961). In 
particular, they have shown that the extremal fields (and thus by a duality 
rotation the Maxwell fields) can always be identified with two of  the 
generators of  the IHG. As we will see, a key step in modeling the RMW 
problem on the biframe bundle will be to pick the extremal fields as part 
of  the bivector basis. 

2. T H E  B I F R A M E  B U N D L E  

Before considering a sketch of the structure of the biframe bundle (a 
more detailed account will be published elsewhere) a sketch of  the standard 
frame bundle L M  will be given. Assume a four-dimensional spacetime 
manifold M. The frame bundle L M  is a principal fiber bundle with structure 
group G/(4). A point u ~ L M  can be written as u = (p, e~), where (e~) is a 
basis of  TIMp, with dual basis ( ~ )  ( ~ ( e ~ ) -  ~ - 8 8 ,  a, f l = l , . . . , 4 ) .  The 
projection or: L M - ~  M is defined by 1r(u) = p. A local section (tetrad field) 
s: U ~ L M ,  Uc_M,  can be defined as s ( p ) = ( p ,  e~lp). 

The frame bundle L M  is unique among G/(4) principal bundles over 
spacetime in that it supports an object called the soldering form 0 [see, for 
example, Trautman (1970) and Norris et al. (1980)]. The soldering form on 
L M  is an R4-valued one-form, i.e., 0: T, LM--> R 4 and is defined by O,(X)  = 
~ [ d ~ r ( X ) ] r , ,  where (r~) is the standard basis of  R 4, u = ( p ,  e~), and 
X ~ T,,LM. The soldering form on L M  is characterized by the following 
properties: 

(a) 0 is an R4-valued one-form on LM. 
(b) R * O = g  -1 �9 O, V g e  G/(4). 
(c) O(X) = 0 if and only if d ~ ( X )  = O. 

In (b) the "do t"  denotes the standard action of  Gl(4) on R 4. 
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Given a connection o3 on LM, the curvature and torsion two-forms are 
defined by (Kobayashi and Nomizu, 1963) 

fi  =/)O3 = do3 +O3 ^ O3 (2.1) 

~) = JDO = dO + O3 ^ 0 (2.2) 

where / )  denotes the exterior covariant derivative with respect to o3. The 
torsion 6) is an R4-valued two-form. Pulled back in a local gauge s(p)= 
(p, e~,O~lp) of  LM, (2.2) takes the form 

~Ojk = 2(0Ej ~kl + FEjI~I ~k]) (2.3) 

The biframe bundle L2M is defined over the same four-dimensional 
spacetime manifold M. The associated tensor spaces are the spaces AT2Mp 
of  antisymmetric rank-two tensors at p c M. As a vector space, AT2Mp is 
six-dimensional. Let (to) (a = 1 , . . . ,  6) be a basis (a biframe) of  AT2Mp. 
The dual basis is denoted by (to),  and satisfies ra(t6) = 6 ~ .  Since the t~ are 
antisymmetric rank-two tensors (bivectors), they can be written as 

d 

ta=flo k%~e~-et3| a<f l  

for (e~) a basis of T~M. Further, the to transform, in general, under Gl(6). 
That is, if  g e GI(6), g = (g~) (a, b = 1 . . . .  ,6),  then a new biframe basis ?o 
can be defined by ?o = tbg~. Since there are six independent bivectors in 
the biframe, one needs the full GI(6) transformation group. 

The biframe bundle L2M is a principal fiber bundle with structure 
group GI(6). A point u ~ L2M can be written as u = (p, ta), where (t~)p is 
a biframe at p c  M. The projection ~r: L:M--> M is defiend by ~-(u) =p. A 
local section o-: U-->L2M, Uc_M, is defined by (r(p)=(p, tol,), for all 
points p e U. The right action of GI(6) on L2M is defined by Rg : L2M --> L2M 
such that Rgu = u.  g = (p, t~g~), Yg c Gl(6). A connection 1-form on L2M 
is a gl(6)-valued 1-form with the standard properties of a connection. 

The biframe bundle does support a generalized soldering form. 
However, the striking difference is that this soldering form is a two-form, 
as opposed to the one-form on LM. Let /3 be an R6-valued two-form on 
L2M, i.e., /~u: TuLZM• L 2 M ~  6, defined by 13~(X, Y)=~'~(d~r(X), 
d~( Y))ro for X, Y~ T~L2M, u = (p, to), and (~.o) dual to (to). Here and in 
the following (to) denotes the standard basis of ~6. 

The soldering form on L2M has the following properties: 

(a) /3 is an ~6-valued two-form on L:M. 
(b) R*fl = g - ' . ~ ,  Vgc G/(6). 
(c) /3(X, Y ) = 0  if d r r ( X ) = 0  and /or  d~-(Y)=0.  
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In (b) the "do t"  denotes the standard action of Gl(6) on ~6. 
Given a connection one-form ~o on LZM, the curvature of  w is the 

gl(6)-valued two-form defined in the standard way by 

1~ = Dw = dw + w ^ o~ (2.4) 

However,  the bitorsion of  the connection is an ~6-valued tensorial three- 
form, defined by 

O = D/3 = ,tl3 + , o  ^/3 (2 .5)  

The bitorsion and the curvature on L2M satisfy the first and second Bianchi 
identities 

D O  = 1"~ ̂ /3 (2.6) 

D a  = 0 (2.7) 

Let o-: U-->L2M, Uc_M, be a local section of  L2M with o - (p )=  
(p, ta[p), Vp ~ U. The components  of  the pullback of the curvature take the 
standard form (where F = o-*w, R = �89 

b b b c 
R~13a = 2(0[~Ft~la + F t~ leF~, )  (2.8) 

Associated objects can be defined by using a biframe (ta) and its dual 
(~'") to express Lie algebra indices as spacetime indices. For example,  b R ~/3a 

o-p ] ~ b  a ,,o-p can be reexpressed as R~t3vs = ,,~t3~'v~,b . The local components  of  the 
pullback of  the bitorsion (2.5) and the first Bianchi identity (the bitorsion 
Bianchi identity) (2.6) take the forms 

a a a b ~0~#~ = O[,~'r~z, ] + F[c~lbF'r~,] (2.9) 

a a b l n a  b (2.10) 

respectively, where ~O = o-*| Here and in the following we use a left 
subscript to denote the gauge when needed for clarity. 

3. T H E  B I T O R S I O N  STRUCTURE E Q U A T I O N S  AND 
G E O M E T R I C A L  S OUR C ES  

As a simple pre l iminary  application of the formalism, we show that 
the bitorsion equations (2.9) and (2.10) can be rewritten in a form which 
is very analogous to the field equations that occur in non-Abelian gauge 
theories. Consider a typical non-Abelian gauge theory based on some 
N-paramete r  group. Let A~ (a = 1 . . . . .  N)  represent the local components  
of  a given connection 1-form (the gauge potentials) with values in the Lie 
algebra of  the gauge group. Further, let F ~  be the components  of  the 
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corresponding curvature two-forms (the field strengths). Then the field 
equations of  such a typical gauge theory can be written as 

- -  A a 1Z?#lxab ...1- f l  x a  
~"7 ~Votl.*P "aa __ - - r l o t b l  ~ J M 

__ p .a  , a a  - -  p~a 
- -  J S M  -I- J M - -  J M ,  t o t a l  

A a I~:l~ab &_ i r a  
r r  ~" v a ~  ~ z ' ~ a = _ , = t ~ b ~  - - . ' E  

(3.1) 

- -  / z a  /xa  - -  b~a 
- Jse + JE -- Jeototal (3.2) 

a d I i r a  A c a where we have defined A~b = ~dcbr~t~, where the fcb a r e  the structure 
constants of  the Lie algebra. In the above, Je and JM are the generalized 
external electric and magnetic sources, while Js~ and JSM are the electric 
and magnetic self-currents. The external sources transform tensorially with 
respect to a transformation of the gauge group, while the self-currents 
transform in a nontensorial manner. Conservation of the total currents, 
namely ~'~ ~'~ - ~ 7 / x J E , t o t a  I - -  as a ~ T g J M , t o t a  I = 0 and 0, follows trivial consequence of 
the structure of  the field equations. 

Consider the bitorsion structure equations (2.9) and the bitorsion 
Bianchi identities (2.10). First, since ~| is a three-form, we can use the 
Hodge dual operator defined by the metric to define equivalent one-forms 
* ~ X a  _ 1 9 f _ ; t , ~ / 3 " / (  r  ~v - 2 ~  t ~ , ~ r  Next, since the bitorsion Bianchi identity is 
expressed in terms of a four-form, we can take the total dual of  (2.10) to 
obtain an equivalent scalar equation. Further, if a Riemannian connection 
on L M  is assumed, then relations (2.9) and (2.10) can be recast in the form 

d 

- -  o - v  - -  o - J t o t a l  (3.3) 

and 

v ~  ( j  ~~ + * 0  ~~ --  v o ( J t o t . , )  = 0 (3.4) 

respectively. In the above relations V~ is the local covariant derivative 
operator with respect to the Riemannian connection on LM. Further, we 
have defined a biframe "self-current" as ~jua = --~l,brra .u~b 

This bitorsion structure equations (3.3) are completely analogous to 
the gauge theory field equations (3.1) and (3.2). The bitorsion transforms 
tensorially under a GI(6) transformation, while the biframe self-current 
does not. In this analogy the bitorsion plays the role of  an external geometrical 
source in the bitorsion structure equations. Furthermore, the bitorsion Bianchi 
identities (3.4) guarantee conservation of  the total geometrical sources. The 
current conservation laws are a consequence of the biframe bundle geometry. 
These results will be used below in reformulating the RMW problem. 
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4. T H E  S T A N D A R D  R M W  T H E O R Y  

We next recall some basic facts from RMW theory (Rainich, 1925; 
Misner and Wheeler, 1957). A source-free Einstein-Maxwell spacetime is 
any four-dimensional Riemannian spacetime which satisfies 

G~ = f ~ f ~  + f*~f*~ (4.1) 

V,~f *A" = 0 (4.2) 

V~f A~ = 0 (4.3) 

where G ~  is the Einstein tensor and f ~  is the Maxwell field strength. 
Further, a non-null field satisfies f*4~f~ O. 

The RMW theory provides a method of geometrizing such spacetimes. 
The following conditions are both necessary and sufficient for an arbitrary 
four-dimensional Riemannian spacetime (M, g) to be equivalent to a non- 
null source-free Einstein-Maxwell spacetime: 

/~ =0  (4.4) 

R,~Rt3"t3 "~, =�88 (4.5) 

/~oo -> 0 (4.6) 

a~ = O~a (4.7) 

where 

= ~ J 
(4.8) 

Non-null Einstein-Maxwell spacetimes are geometrized in that condi- 
tions (4.4)-(4.8) are purely geometrical relations stated completely in terms 
of g and its derivatives. In particular, the nongeometrical Maxwell field 
strength f,~ does not explicitly appear in these conditions. This nonappear- 
ance of fu~ in equations (4.4)-(4.8) is a strength of the RMW theory in 
that the conditions can be stated completely in terms of the metric. On the 
other hand, the physical Maxwell field f ~  does not play a fundamental 
geometrical role in the theory. 

Any four-dimensional Riemannian geometry which satisfies (4.4)-(4.6) 
will be called a non-null algebraic R M W  spacetime (ARMW),  while (4.7)- 
(4.8) will be referred to as the RMW differential condition. The vector a~, 
in (4.8) is called the complexion vector. 

The electromagnetic field strength can be recovered in the RMW 
theory. Given an algebraic RMW spacetime, there exists naturally defined 
geometrical bivectors ~:~t~ and its dual ~:*t~. The bivector ~ is the so-called 
extremal Maxwell square root of the Ricci tensor (Rainich, 1925; Misner 
and Wheeler, 1957). 
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For ARMW spacetimes, new bivectors E~r and ~*~ can be constructed 
by a duality rotation, i.e., 

E~t3 = ~ cos a + ~:*~ sin a (4.9) 

Z*13 = ~:*~ cos a - sc~  sin a (4.10) 

The algebraic conditions (4.4)-(4.6) are necessary and sufficient to guarantee 
that the new bivectors Y,~ and ~*~, for each complexion angle c~, satisfy 
the quadratic form 

d p . v  ~ ~ : g a  

= Z ~ Z 7  + ]~*,Z *~ (4.11) 

as in (4.1). 
Thus, ARMW spacetimes guarantee the quadratic structure (4.1), but 

the Maxwell equations need not be satisfied. The extra condition necessary 
and sufficient for the source-free Maxwell equations to be satisfied is 
precisely the RMW differential condition (4.7)-(4.8). 

Recall that when the differential condition (4.7)-(4.8) is satisfied, i.e., 
when a~, = O~,a, the Maxwell equations (4.2) and (4.3) can be written in 
terms of the extremal Maxwell square root as 

V ~  : * ~  - (O~a)~ ~" = 0 (4 .12)  

V.~*" + (0,a)~:**" = 0 (4.13) 

The relations (4.12) and (4.13) will be called the R M W  extremalfield 
equations. Thus, (4.12) and (4.13) are equivalent to the Maxwell equations 
in that a duality rotation on the bivectors occurring in (4.12) and (4.13) 
will produce the source-free Maxwell equations (4.2) and (4.3). 

5. THE BIFRAME BUNDLE AS A NATURAL GEOMETRICAL 
ARENA FOR THE R M W  T H E O R Y  

The biframe bundle is a natural geometrical arena for the RMW 
problem. The intuitive idea of the construction described below is as follows. 
If one is given an ARMW spacetime, then, as discussed earlier, there exist 
naturally defined geometrical bivectors ~ ,  and ~*~. As will be shown below, 
these bivectors can be used to define special sections of L2M. Further, it 
will be shown that duality rotations correspond precisely to special section 
changes on the biframe bundle. 

However, the real power of studying ARMW spacetimes on the biframe 
bundle lies in the bitorsion structure equations. We will show that when 
equations (3.3) are pulled back in one of the above-mentioned special 
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sections they take the form of generalized extremal equations. These 
geometrical bivector equations, inherent to the biframe bundle, reduce in 
a special case to the RMW extremal field equations (4.12) and (4.13). 

Thus, to model the RMW problem on the biframe bundle, consider 
the set of  all ARMW spacetimes. Each such ARMW spacetime leads to the 
geometrical bivectors 4:~t~ and * ~:~. An equivalence class [*(] of  sections of 
L2M * can then be defined. Two sections *s r and "71 ~ [*s ~] are equivalent 
i f*~(p)  = (p, ( ~ ,  - ( *~ ,  ZA)p) and *V(P) = (P, (~,t3, -~*~, ~A)p), Vp ~ U c_ 
M. The ( r  A) (A =3,  4, 5, 6) are, for our purposes, arbitrary cobivectors 
picked to complete the cobiframe. That is, in this construction we will only 
be concerned with the one-two blades, i.e., in the first and second cobivectors 
of the cobiframe. Any *s c ~ [*~:] will be called an extremal gauge of L2M *. 
The corresponding dual gauge of  L2M will be labeled ~:. 

An example of the use of  more than just two cobivectors associated 
with a cobiframe can be found in Norris and Davis (1979). This example 
considers the possibility of extending the above bivector formalism to 
Einstein-Yang-Mills spacetimes. Clearly, the increased number of  field 
strengths associated with a Yang-Mills gauge theory would lead to a 
corresponding increase in the number of special cobivectors picked to fill 
out the cobiframes. Note that a generalization of the above formalism to 
Einstein-Yang-Mills spacetimes is a real possibility in the sense that the 
structure group of the biframe bundle is GI(6), which is certainly larger 
than most non-Abelian gauge groups associated with standard physical 
theories. 

Consistent with the above construction, we next define a special gauge 
transformation. Let h: U ~  GI(6), U c M, be defined by 

/cos a(p)  sin a ( p )  00) 

where a:  U + t and the above holds for all p c U. The 4 • 4 identity matrix 
I4 could be replaced by a general GI(4) matrix. However, again we are 
interested here only in the first and second blades and thus we simplify. 

Given *~: an extremal section of  L2M *, a new section *Z = "4:. h at a 
point p ~ M has the form *E(p)  = (p, (Z,~, -Z*t~, rA)p). Here, Y.,~ and Z*e 
are precisely a duality rotation of the extremal fields ~:~ and ~:*~ as in 
(4.9) and (4.10). Thus, duality rotations correspond to special section changes 
of  L2M *. 

This model, in which the extremal fields are part of a bivector basis 
and duality rotations are special GI(6) transformations on this basis, helps 
to clarify several aspects related to the RMW problem. For example, in 
typical discussions concerning the RMW problem it is usually shown that 
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expressions such as Gt3~ :~  and ~ * ~  are not duality invariant. From the 
above discussion, *~(p) = (p, (Gt~, -~*t3, 7A)p) and thus the expressions in 
question are 

~o#3~a/3 = _(1) a/3(l) ~ r, ( 5 .2 )  

~(2) a / 3 ( l )  
- # * ~  = . o ~ .  (5.3) 

These correspond to components  of z]~ r "~b, and clearly are not invariant 
under GI(6) transformations (Norris and Davis, 1979). 

The bitorsion structure equations (3.3) take an interesting form when 
pulled back in an extremal section. The first and second components  
(a = 1, 2) can be recast in the form 

V.s  e-A" - r cx" + d3.s c-a" = ~O A(]) (5.4) 

V , d  ~" + ea ,~  *~" + ~3.~ ~'~ = ~O "(2) (5.5) 

These equations are clearly a generalization of (4.12) and (4.13), and 
will be referred to as the generalized extremal identities. The two vectors a ,  
and fl~, will be called generalized complexion vectors. Explicit formulas for 
a~, and /3, will be given below in special cases. Note that the bitorsion 
*O A~ acts as a geometrical source in the bivector field equations (5.4) and 
(5.5). Thus, the generalized extremal identities, which are central to the 
RMW problem, occur naturally in biframe bundle geometry. They are simply 
two components  of  the pullback of the bitorsion structure equations in an 
extremal gauge. 

In the special case that ca .  = 0 . a  and d3. = 0, a new section * f =  *~. h 
of  L2M * can be defined. In this new gauge the generalized extremal 
equations (5.4) and (5.5) reduce to 

V~f  * ~  = }0  A('~ (5.6) 

V~fx~ = ~(~A(2) (5.7) 

Relations (5.6) and (5.7) are the Maxwell equations with geometrical 
(bitorsion) sources. The geometrical r ichness of  the biframe bundle in 
conjunction with A R M W  spacetimes has thus led to a geometrization of 
the Maxwell equations. These field equations are a special case of  the 
bitorsion structure equations, and the bitorsion itself plays the role of a 
geometrical source. 

The existence of geometrical sources for the Maxwell equations on the 
biframe bundle leads immediately to the question of extending the RMW 
program to include geometrical sources. In the next section we show that 
such an extension can be accomplished in a partially geometrical manner.  
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6. A N  E X T E N S I O N  OF T H E  R M W  P R O G R A M  TO 
I N C L U D E  SOURCES 

To consider Einstein-Maxwell  spacetimes with sources, one needs not 
only sources for the Maxwell equations (here geometrical), but also nonelec- 
t romagnetic  sources for the Einstein equations (here nongeometrical).  
Fortunately, nongeometrical  sources for the Einstein equation can be intro- 
duced in such a manner  as to keep the algebraic structure of  RMW space- 
times intact. The following amounts to an extension of the algebraic structure 
of  the Maxwell stress tensor as developed by Rainich (1925). 

Let (M, g) denote a four-dimensional Riemannian spacetime geometry. 
The Einstein equation associated with an Einstein-Maxwell  spacetime with 
sources can be written as 

G/xv = Tt~ a . .~ T ~ (6.1) - , ~  ( f o , ~ f ~ + f . ~ f ~  ) +  ,~ 

s Here T~,~ represents the nongeometrical,  nonelectromagnetic source stress 
tensor. For example,  this part  of  the stress tensor for a charged fluid takes 
the form T ~  =/zu~u~, where u, is the four-velocity of  the fluid and /x is 
the energy density [see, for example,  Synge (1960)]. 

Note that the difference ((~,~ - T ~ )  has the quadratic bivector structure 
which is characteristic of  source-free Einstein-Maxwell  spacetimes. That 
is, given any Einstein-Maxwell  spacetime with sources, we can write ( ( ~ . ~ -  

s ~ * , a  T~,~) = ( f~ , f~  + f ~ f ~  ). Thus, to extend the notion of A R M W  spacetimes 
to include sources, we consider a triple (M, g, T ' ) ,  where (M, g) is a 

s four-dimensional Riemannian spacetime and T~,~ is some given non- 
geometrical,  nonelectromagnetic source stress tensor. Given such a triple 
(M, g, T ' ) ,  define the difference tensor 

d 

T,,, = G~,, - T s ~,, (6.2) 

An algebraic Rainich spacetime (AR) is any triple (M, g, T s) such that 
the difference tensor T,~ as in (6.2) satisfies the following conditions 
[cf. (4.4)-(4.6)]: 

T = 0  (6.3) 

~,--11,-~='T To4 " (6.4) T,~ Tl3 - ~ . . . . .  o,b-- 

Too -> 0 (6.5) 

Furthermore,  the spacetime will be referred to as non-null for K = 1, and 
null for K = 0. As in the standard RMW formalism, the algebraic conditions 
(6.3)-(6.5) are necessary and sufficient to guarantee that the difference 
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tensor T~,~ can be written in the form 

T.~ = ~ . ~  + , :* ,~*" 

= E ~ Z ~  + E,~.E ~ (6.6) 

Here, ~,~ is now the extremal Maxwel l  square root of T ~ ,  with dual * 
and the cobivectors s and E*,  are obtained by a duality rotation [cf. 
(4.9) and (4.10)] of the extremal fields through a complexion angle a. Given 
~,~ and * sr~,~, one can then define extremal sections of L 2 M  * as before. 

Each AR spacetime leads to an equivalence class [~:] of extremal 
sections of  L2M. Each such ~ ~ Is r] in turn leads to the generalized extremal 
identities as given in (5.4) and (5.5). These can be solved for the two 
generalized complexion vectors a~, and/3 , .  Because of relation (6.6), these 
can be rewritten using bivector identities [see, for example, Misner and 
Wheeler (1957)] for non-null AR spacetimes as 

f T~V~,T a~) 2(*Ox(l)r +*OX(2)C* J, ~ 1.4- "~ sap r sap,, (6.7) 

Z( ~ gap 

eflo = 4 To~,TO~, j , To, TO, 
(6.8) 

Clearly, (6.7) is a generalization of the form of the standard RMW 
complexion vector a ,  as given in (4.8). From (6.7) and (6.8),/3p is a new 
complexion vector, which is analogous to a~. Note that/3p does not appear 
in the standard RMW formalism. The new terms involving .taAa e._. are new 
geometrical source terms. The reduction of relations (6.7) and (6.8) back 
to the standard form of  the RMW problem will be discussed below. 

By an Eins te in-Maxwel l  spacetime with partially geometrical sources we 
will mean a triple (M, g, T s) satisfying 

G ~  (f .~f~ * .~ T s = " + f . , f ~  ) + ,,~ (6.9) 

V . f**"  = ~O A(') (6.10) 

V . f  A" = ~O A(2) (6.11) 

for some section * f = * f -  h (a duality rotated section) of L 2 M  *. Our dis- 
cussion above shows that the RMW problem can be extended to include 
sources in a partially geometrical manner, and the generalization of the 
RMW result can be stated as follows: 

An  A R  spacetime is a non-null Eins te in-Maxwel l  spacetime with partially 
geometrical sources i f  and only i f  in an extremal gauge ~c~, = Ova and ~fl~, = O. 
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It is clear that the bitorsion acts as a geometrical source for the Maxwell 
equations, while it was necessary to assume a nongeometrical source for 
the Einstein equation. 

Notice that if T ~ -  0, then T~  G ~  R~,~. Furthermore, if thebi tor-  
sion ~O Aa = 0, then relations (6.9)-(6.11) reduce precisely to the source-free 
Einstein-Maxwell spacetimes [i.e., (4.1)-(4.3)]. Simultaneously, relation 
(6.7) reduces to the definition of the standard RMW complexion vector 
given in (4.8). Also, in this special case ~fl~, = 0 can be shown to be trivially 
satisfied through the doubly contracted Bianchi identities of the Riemannian 
curvature. Hence, the new complexion vectors a~, and /3~ given in (6.7) 
and (6.8) are generalizations of the standard RMW complexion vector. 

An interesting second special case of  the above formalism is to consider 
the case when T~v = 0, but let the bitorsion ~O Aa be nonzero. This would 
seem to imply a potential flaw in the theory, as (6.9)-(6.11) would allow 
sources for the Maxwell equations which did not appear as gravitational 

s sources for the Einstein equation. However, it can be shown that T~,~ = 0 
in conjunction with the condition ,fi~ = 0 [which again is necessary and 
sufficient for (6.9)-(6.11)] in fact forces the first and second components 
of  the bitorsion to vanish, that is, ~O A(1) = 0 and ~O x(2) = 0. Thus, the sources 

A a  obey the empirical relation that the electromagnetic sources fO can vanish 
while the gravitational sources need not vanish, but not vice versa. 

7. CONCLUSIONS 

The biframe bundle is a natural geometrical arena in which to reformu- 
late the RMW theory. Each ARMW spacetime leads to an equivalence class 
of extremal sections of  the biframe bundle. Further, duality rotations corre- 
spond to special section changes of L2M.  In the standard RMW formalism, 
the Maxwell fields can be recovered from the geometry, but they play no 
fundamental geometrical role within the context of the given Riemannian 
geometry. The Maxwell fields play a more direct geometrical role in the 
biframe bundle, as they build part of a biframe. Furthermore, the Maxwell 
equations themselves are geometrized on the biframe bundle, as they are a 
special case of  the bitorsion structure equations. 

The RMW program can be extended to include Einstein-Maxwell 
spacetimes with partially geometrical sources. A key step in this extension 
is the introduction of algebraic Rainich (AR) spacetimes. Each AR space- 
time is a triple (M, g, T S) with certain algebraic properties, where (M, g) 
is a four-dimensional Riemannian spacetime and T ~ represents all non- 
geometrical, nonelectromagnetic gravitational sources for the Einstein 
tensor. The algebraic structure associated with AR spacetimes completely 
parallels that of ARMW spacetimes, the key difference being that the AR 
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spacetimes do not preclude the possibility of  nonzero sources for the coupled 
Einstein-Maxwell  equations. 

The biframe bundle in conjunction with algebraic Rainich spacetimes 
leads to a generalization of the standard RMW program. This generalization 
includes geometrical sources for the Maxwell equations and nongeometrical  
sources for the Einstein equation. Further, the reformulation introduces 
two generalized complexion vectors as opposed to the single complexion 
vector associated with the usual RMW theory. In the special case of  no 
sources, the entire formalism reduces to the standard RMW theory. 

The standard RMW theory provides necessary and sufficient conditions 
on an arbitrary spacetime (M, g) in order for this spacetime to be a non-null 
source-free Einstein-Maxwell  spacetime. The generalization of the RMW 
program presented here provides necessary and sufficient conditions on an 
arbitrary triple (M, g, T s) in order for this triple to be a non-null Einstein- 
Maxwell spacetime with partially geometrical sources. 
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